
姓名 | 吕培文 |
学历 | 工学博士 |
职称 | 讲师 |
专业方向 | 功能材料 |
电子邮件 | lvpeiwen@whpu.edu.cn |
教育和工作经历:
2012年-2016年, 北京交通大学,材料化学,本科
2016年-2018年, 北京交通大学,化学工程,硕士
2018年-2022年, 北京交通大学,光学工程,博士
2022年12月-至今 武汉轻工大学,化学与环境工程学院,教师
主要研究方向:
1. 低毒无镉纳米发光材料和器件;
2. 生物质荧光探针。
科研项目:
国家自然科学基金委员会, 面上项目, 61974009, 无铅卤化物双钙钛矿纳米材料的构筑及发光二极管
应用研究, 2020-01-01 至 2023-12-31, 59万元, 参与
代表性论文和专利:
[1] Lv P, An X, et al. Construction of Robust Cadmium-Free Cu–In–Zn–S Nanocrystals and Polyfluorene Derivatives Hybrid Emissive Layer for Stable Electroluminescent White Light-Emitting Devices[J]. Journal of Physical Chemistry Letters, 2021, 12(30): 7113-7119.
[2] Lv P, Wang L, et al. Electroluminescent white light-emitting diodes with cadimum-free Cu-In-Zn-S nanocrystals sandwiched between two TFB layers[J]. Optics Letters, 2022, 47(11): 2722-2725.
[3] Lv P, Liu Z, et al. Solution-Processed Electroluminescent White Light-Emitting Devices Based on AIE Molecules and Cu-In-Zn-S Nanocrystals[J]. Photonics Research. 2022, 10(11): 2622
[4]Lv, P., Wang, K., Hou, D., Wu, S., Guan, J., Yin, Z., & Tang, A. (2025). Heavy metal-free white light-emitting diodes based on multinary copper chalcogenide nanocrystals. Optics Letters, 50(7), 2183-2186.
[5]Lei M, Tu Y,Lv P*, et al. Influence of side-methyl substitution position on the phase state and microwave dielectric properties of triphenylacetylene-based liquid crystals[J]. RSC advances, 2024, 14(50): 37341-37349.
[6]Kai Wang, Lv P* , et al. Natural Rutin‐Based AIE Probes With Enhanced Fe3+ Recognition via Hydroxyl Group Engineering[J] Applied Organometallic Chemistry , DOI: 10.1002/aoc.70368
[7] Chen F, Lv P, Li X, et al. Highly-efficient and all-solution-processed red-emitting InP/ZnS-based quantum-dot light-emitting diodes enabled by compositional engineering of electron transport layers[J]. Journal of Materials Chemistry C, 2019, 7(25): 7636-7642.
[8] Guan Z, Ye H, Lv P, et al. The formation process of five-component Cu–In–Zn–Se–S nanocrystals from ternary Cu–In–S and quaternary Cu–In–Se–S nanocrystals via gradually induced synthesis[J]. Journal of Materials Chemistry C, 2021, 9(27): 8537-8544.
[9] Shen S, Guan Z, Lv P, et al. Improved device performance of solution-processed red-colored Cu–In–Zn–S-based quantum dot light-emitting diodes enabled by doping TCTA into the emitting layer[J]. Organic Electronics, 2020, 84: 105790.
[10] Guan Z, Tang A, Lv P, et al. New insights into the formation and color-tunable optical properties of multinary Cu-In-Zn-based chalcogenide semiconductor nanocrystals[J].Advanced Optical Materials, 2018, 6(10): 1701389.
[11] Guan Z, Chen F, Liu Z, Lv P, et al. Compositional engineering of multinary Cu–In–Zn-based semiconductor nanocrystals for efficient and solution-processed red-emitting quantum-dot lightemitting diodes[J]. Organic Electronics, 2019, 74: 46-51.
[12] Cui W, Zhao J, Wang L, Lv P, et al. Unraveling the phase transition and luminescence tuning of Pbfree Cs–Cu–I perovskites enabled by reaction temperature and polar solvent[J]Journal of Physical Chemistry Letters, 2022, 13: 4856-4863.
[13] Zheng Z, Liu Z, Ding Y, Chen M, Lv P, et al. Structural engineering toward high monochromaticity of carbon dots-based light-emitting diodes[J]. Journal of Physical Chemistry Letters, 2021, 12(50): 12107-12113.